• 产品

    动圈扬声器

    BMR 扬声器

    动圈接收器

    BA 接收器

    蜂鸣器

    激励单元

    鹅颈麦克风

    ECM 麦克风

    MEMS 麦克风

    特种麦克风

    IA 麦克风

    加速度传感器

    语音振动传感器

    声学阻尼器

    防耳垢滤网

    感应线圈

    编程配件

    扬声器模组

    麦克风模组

    RIC 模组

    ProxFusion 多功能传感器

    ProxFusion 评估套件

    ProxSense 电容式传感器

    ProxSense 模组

    ProxSense 评估套件

    神经决策处理器

    助听器 DSP

    助听器 DSP 评估套件

    蓝牙模组

    蓝牙模组评估套件

  • 声学设计服务

    扬声器解决方案

    麦克风解决方案

    OTE - ITE 助听器

    声学测量能力

    电声仿真

  • 工程设计与制造

    扬声器交钥匙解决方案

    麦克风交钥匙解决方案

    工业工具

  • 合作伙伴
  • 关于我们
  • 新闻资讯
    • 声学评测
    • 活动
    • 线上研讨会
联系我们
  • 产品

    动圈扬声器

    BMR 扬声器

    动圈接收器

    BA 接收器

    蜂鸣器

    激励单元

    鹅颈麦克风

    ECM 麦克风

    MEMS 麦克风

    特种麦克风

    IA 麦克风

    加速度传感器

    语音振动传感器

    声学阻尼器

    防耳垢滤网

    感应线圈

    编程配件

    扬声器模组

    麦克风模组

    RIC 模组

    ProxFusion 多功能传感器

    ProxFusion 评估套件

    ProxSense 电容式传感器

    ProxSense 模组

    ProxSense 评估套件

    神经决策处理器

    助听器 DSP

    助听器 DSP 评估套件

    蓝牙模组

    蓝牙模组评估套件

  • 声学设计服务

    扬声器解决方案

    麦克风解决方案

    OTE - ITE 助听器

    声学测量能力

    电声仿真

  • 工程设计与制造

    扬声器交钥匙解决方案

    麦克风交钥匙解决方案

    工业工具

  • 合作伙伴
  • 关于我们
  • 新闻资讯
    • 声学评测
    • 活动
    • 线上研讨会
Contact Us
  • 产品
  • 声学设计服务
  • 工程设计与制造
  • 合作伙伴
  • 关于我们
  • 新闻资讯
    • 声学评测
    • 活动
    • 线上研讨会
  • 产品
  • 声学设计服务
  • 工程设计与制造
  • 合作伙伴
  • 关于我们
  • 新闻资讯
    • 声学评测
    • 活动
    • 线上研讨会
Contact Us

Search for specific product:

Categories:

  • Acoustic Components
  • Capacitive, Multifunctional Sensors
  • Processors
  • Wireless Systems

Latest News:

How to estimate SPL from a microphone output ?

14 October 2025

When developing audio devices involving microphones, knowing the actual Sound Pressure Level (SPL) hitting your sensor is crucial. It…

Read More »
« Previous Next »
Home / Acoustic Review / Electrodynamic Loudspeaker – the Lumped Element Modeling approach

Electrodynamic Loudspeaker – the Lumped Element Modeling approach

Since its invention by C. Rice and E. Kellogg in 1925 [1], the electrodynamic loudspeaker has been more than widely exploited in the audio industry. But if we come to discuss the means of predicting its acoustic behavior, it is rather when L. Beranek published his book Acoustics in 1954 [2][3] that the first models (based on the principle of Lumped elements [4]) were popularized. Among the electroacoustic parameters listed by Beranek in his book (also formulated by A. Thiele and R. Small at the same era), here are the fundamental ones:

       – 𝑅𝑒, the electrical resistive part of the voice coil, in ohms,

       – 𝐿𝑒, the electrical inductive part of the voice coil, in millihenries (often at 1k Hz),

       – B.l, the product of magnet field strength in the voice coil gap and the length of wire in the magnetic field, in tesla-meters,

       – 𝑀𝑀𝑆, the mass of the assembly “diaphragm / voice coil”, the mass of half of the outer suspension and the mass of air particles around the diaphragm (that becomes non-negligeable when dealing with small sized speakers), in kilograms,

       – 𝑅𝑀𝑆, the mechanical resistance of suspensions, in Newton-second per meters,

       – 𝐶𝑀𝑆, the total mechanical compliance of suspensions, in meter per Newton,

       – 𝑆𝐷 (mentioned in the form of the radius “a” in the Beranek’s book), the projected area of the speaker diaphragm.

In his book, Beranek also helped popularize the electrical network that defines the electro-mechano-acoustic behavior of such a loudspeaker. The diagrams in Figure 1 present three loops, dealing respectively with the electrical, mechanical, and acoustic domain of the transducer.

Among important analogies brought by this circuit, ones to save in mind are:

       – Voltage (U) from the first loop becomes a mechanical force (F) in the second loop and an acoustical pressure (P) in the third loop,

       – Current (i) from the first loop becomes a mechanical velocity (v) in the second loop and an acoustical flow (q) in the third loop.

Figure 1 – Lumped element circuit of a dynamic loudspeaker

In this circuit, the link between the loop No. 1 and 2 is ensured by a gyrator. This later defines the following relationship F = B.l * i ; U = B.l * v  . The link between the loop No. 2 and 3 is achieved through a transformer. This later defines the following relationship P = F/SD

It is important to note that this modeling approach assumes one-dimensional acoustic behavior only. There is therefore an upper frequency limit for the validity of this model, which we can approximate as its quarter wavelength being comparable to the size of the diaphragm of the loudspeaker considered.

The Figure 2 below illustrates an example around a 45 mm dia. loudspeaker, where measurements are compared to simulations. From this comparison, we observe a very good matching of the predictions until the theoretical frequency limit of 1.9 – 2k Hz. Above this frequency, radiation from the loudspeaker slowly starts to be impacted by the resonances from the diaphragm itself.

Figure 2 – Measurement (Solid line) vs Lumped element model (dashed line)

By adding a few components to the model presented in Figure 1, it then becomes possible to simulate the impact of a rear volume or a front cavity on the speaker sound signature.

Seltech can help you simulate your system and refine each parameter to offer you an acoustic solution that precisely meets your requirements.

Discover more about our acoustic department

Review by:

Frédéric Fallais, Acoustic Application Engineer

Arthur Di Ruzza, Acoustic Technician

Sources :

[1] C. W. Rice and E. W. Kellogg, “Notes on the Development of a New Type of Hornless Loud Speaker,” Transactions A.I.E.E., 1925, Vol. XLIV

[2] L. L. Beranek, Acoustics, Massachusetts: Institute of Technology, 1954

[3] L. L. Beranek and T. Mellow, Acoustics: Sound fields, Transducers and Vibration (Second Edition), Academic Press, 2019

[4] https://en.wikipedia.org/wiki/Lumped-element_model

[Fig.1] J. Hipperson et al. Multiphysics simulation of a low frequency horn loudspeaker, Institute of Acoustics, Reproduced Sound 2021

PrevPreviousVibrational haptics – Mechanics behind touch sensation
NextSensors converge 24 – Santa Clara, CA – June 24-26Next

南京赛泰商贸有限公司

江苏省南京市鼓楼区南昌路40号长江科技园大厦2001

Tel EU : +33 1 48 92 90 02
Tel USA : +1 (919) 481 6896
Tel CN: +86 25 83 45 54 33

产品

  • 声学组件
  • 电容式多功能传感器
  • 处理器
  • 无线系统
  • 声学组件
  • 电容式多功能传感器
  • 处理器
  • 无线系统

服务

  • 声学设计服务
  • 工程设计与制造
  • 碳足迹
  • SPL 计算器
  • 加入我们
  • 声学设计服务
  • 工程设计与制造
  • 碳足迹
  • SPL 计算器
  • 加入我们

法律信息

  • 欧洲条款与条件
  • 美国条款与条件
  • 企业社会责任(CSR)
  • 法律声明
  • 欧洲条款与条件
  • 美国条款与条件
  • 企业社会责任(CSR)
  • 法律声明

© Copyright 2025 SELTECH, All Right Reserved.